Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.238
Filtrar
1.
JCO Precis Oncol ; 8: e2300603, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635932

RESUMO

PURPOSE: Few studies have explored the potential for pharmacological interventions to delay disease progression in patients undergoing active surveillance (AS). This preplanned transcriptomic analysis of patient samples from the ENACT trial aims to identify biomarkers in patients on AS who are at increased risk for disease progression or who may derive the greatest benefit from enzalutamide treatment. PATIENTS AND METHODS: In the phase II ENACT (ClinicalTrials.gov identifier: NCT02799745) trial, patients on AS were randomly assigned 1:1 to 160 mg orally once daily enzalutamide monotherapy or continued AS for 1 year. Transcriptional analyses were conducted on biopsies collected at trial screening, year 1, and year 2. Three gene expression signatures were evaluated in samples collected at screening and in available samples from patients on AS at any time during surveillance (expanded cohort): Decipher genomic classifier, androgen receptor activity (AR-A) score, and Prediction Analysis of Microarray 50 (PAM50) cell subtype signature. RESULTS: The Decipher genomic classifier score was prognostic; higher scores were associated with disease progression in the expanded cohort and AS arm of the expanded cohort. Patients with higher Decipher scores had greater positive treatment effect from enzalutamide as measured by time to secondary rise in prostate-specific antigen >25% above baseline. In patients treated with enzalutamide, higher AR-A scores and PAM50 luminal subtypes were associated with a greater likelihood of negative biopsy incidence at year 2. CONCLUSION: This analysis suggests that the Decipher genomic classifier may be prognostic for disease progression in AS patients with low- to intermediate-risk prostate cancer. Higher Decipher and AR-A scores, as well as PAM50 luminal subtypes, may also serve as biomarkers for treatment response.


Assuntos
Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Transcriptoma , Masculino , Humanos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/patologia , Conduta Expectante , Progressão da Doença
2.
Curr Protoc ; 4(4): e1033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652202

RESUMO

Prostate cancer is a leading diagnosis and major cause of cancer-related deaths in men worldwide. As a typical hormone-responsive disease, prostate cancer is commonly managed with androgen deprivation therapy (ADT) to curb its progression and potential metastasis. Unfortunately, progression to castration-resistant prostate cancer (CRPC), a notably more aggressive phase of the disease, occurs within a timeframe of 2-3 years following ADT. Enzalutamide, a recognized androgen receptor (AR) antagonist, has been employed as a standard of care for men with metastatic castration-resistant prostate cancer (mCRPC) since it was first approved in 2012, due to its ability to prolong survival. However, scientific evidence suggests that sustained treatment with AR antagonists may induce acquired AR mutations or splice variants, such as AR F877L, T878A, and H875Y, leading to drug resistance and thereby diminishing the therapeutic efficacy of these agents. Thus, the establishment of prostate cancer models incorporating these particular mutations is essential for developing new therapeutic strategies to overcome such resistance and evaluate the efficacy of next-generation AR-targeting drugs. We have developed a CRISPR (clustered regularly interspaced short palindromic repeats)-based knock-in technology to introduce an additional F877L mutation in AR into the human prostate cell line LNCaP. This article provides comprehensive descriptions of the methodologies for cellular gene editing and establishment of an in vivo model. Using these methods, we successfully identified an enzalutamide-resistant phenotype in both in vitro and in vivo models. We also assessed the efficacy of target protein degraders (TPDs), such as ARV-110 and ARV-667, in both models, and the corresponding validation data are also included here. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Generation of AR F877L-mutated LNCaP cell line using CRISPR technology Basic Protocol 2: Validation of drug resistance in AR F877L-mutated LNCaP cell line using the 2D CTG assay Support Protocol: Testing of sgRNA efficiency in HEK 293 cells Basic Protocol 3: Validation of drug resistance in AR F877L-mutated LNCaP cell line in vivo.


Assuntos
Benzamidas , Resistencia a Medicamentos Antineoplásicos , Mutação , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Masculino , Nitrilas/uso terapêutico , Benzamidas/uso terapêutico , Humanos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Clin Cancer Res ; 30(8): 1595-1606, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593226

RESUMO

PURPOSE: CD137 is a T- and NK-cell costimulatory receptor involved in consolidating immunologic responses. The potent CD137 agonist urelumab has shown clinical promise as a cancer immunotherapeutic but development has been hampered by on-target off-tumor toxicities. A CD137 agonist targeted to the prostate-specific membrane antigen (PSMA), frequently and highly expressed on castration-resistant metastatic prostate cancer (mCRPC) tumor cells, could bring effective immunotherapy to this immunologically challenging to address disease. EXPERIMENTAL DESIGN: We designed and manufactured CB307, a novel half-life extended bispecific costimulatory Humabody VH therapeutic to elicit CD137 agonism exclusively in a PSMA-high tumor microenvironment (TME). The functional activity of CB307 was assessed in cell-based assays and in syngeneic mouse antitumor pharmacology studies. Nonclinical toxicology and toxicokinetic properties of CB307 were assessed in a good laboratory practice (GLP) compliant study in cynomolgus macaques. RESULTS: CB307 provides effective CD137 agonism in a PSMA-dependent manner, with antitumor activity both in vitro and in vivo, and additional activity when combined with checkpoint inhibitors. A validated novel PSMA/CD137 IHC assay demonstrated a higher prevalence of CD137-positive cells in the PSMA-expressing human mCRPC TME with respect to primary lesions. CB307 did not show substantial toxicity in nonhuman primates and exhibited a plasma half-life supporting weekly clinical administration. CONCLUSIONS: CB307 is a first-in-class immunotherapeutic that triggers potent PSMA-dependent T-cell activation, thereby alleviating toxicologic concerns against unrestricted CD137 agonism.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Imunoterapia/métodos , Microambiente Tumoral
4.
Braz J Med Biol Res ; 57: e13351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511770

RESUMO

The complex pathogenesis of castration-resistant prostate cancer (CRPC) makes it challenging to identify effective treatment methods. Matrix metalloproteinase (MMP)-12 can degrade elastin as well as various extracellular matrix (ECM) components, which is associated with cancer progression. However, the relationship between MMP-12 and CRPC progression is poorly understood. In this study, we observed the effect of MMP-12 on the progression of CRPC and further explored its potential mechanism of action. High levels of MMP-12 were observed in patients with CRPC. We therefore developed cell co-culture and mouse models to study the function of MMP-12. Silencing MMP-12 in CRPC cells disrupted lipid utilization and autophagy marker expression via the CD36/CPT1 and P62/LC3 pathways, respectively, leading to reduced CRPC cell migration and invasion. Moreover, animal experiments confirmed that MMP-12-knockdown CRPC xenograft tumors exhibited reduced tumor growth, and the mechanisms involved the promotion of cancer cell autophagy and the inhibition of lipid catabolism. According to our results, MMP-12 played important roles in the progression of CRPC by disrupting adipocyte maturation and regulating cancer migration and invasion via the modulation of autophagy and lipid catabolism pathways.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Animais , Camundongos , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Lipólise , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/farmacologia , Autofagia , Lipídeos , Linhagem Celular Tumoral , Proliferação de Células
5.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474084

RESUMO

Many studies have demonstrated the mechanisms of progression to castration-resistant prostate cancer (CRPC) and novel strategies for its treatment. Despite these advances, the molecular mechanisms underlying the progression to CRPC remain unclear, and currently, no effective treatments for CRPC are available. Here, we characterized the key genes involved in CRPC progression to gain insight into potential therapeutic targets. Bicalutamide-resistant prostate cancer cells derived from LNCaP were generated and named Bical R. RNA sequencing was used to identify differentially expressed genes (DEGs) between LNCaP and Bical R. In total, 631 DEGs (302 upregulated genes and 329 downregulated genes) were identified. The Cytohubba plug-in in Cytoscape was used to identify seven hub genes (ASNS, AGT, ATF3, ATF4, DDIT3, EFNA5, and VEGFA) associated with CRPC progression. Among these hub genes, ASNS and DDIT3 were markedly upregulated in CRPC cell lines and CRPC patient samples. The patients with high expression of ASNS and DDIT3 showed worse disease-free survival in patients with The Cancer Genome Atlas (TCGA)-prostate adenocarcinoma (PRAD) datasets. Our study revealed a potential association between ASNS and DDIT3 and the progression to CRPC. These results may contribute to the development of potential therapeutic targets and mechanisms underlying CRPC progression, aiming to improve clinical efficacy in CRPC treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Linhagem Celular Tumoral , Biologia Computacional , Neoplasias de Próstata Resistentes à Castração/patologia , Fator de Transcrição CHOP , Resultado do Tratamento
6.
BMC Palliat Care ; 23(1): 80, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532425

RESUMO

BACKGROUND: Men with metastatic castration-resistant prostate cancer (mCRPC) have an incurable disease. Along with prolonging life, symptom management is one of the main goals with treatment. This is also important from a palliative care perspective where the life prolonging outcomes should be balanced with quality of life (QoL) in this late phase. It is also essential in symptom management to view different dimensions of symptoms, for example how severe or distressing symptoms are, to support best QoL. Therefore, more knowledge is needed about the symptom experience when these treatments are initiated and thus the aim of this study was to describe different dimensions of symptoms in men with mCRPC starting their first-line of life-prolonging treatment, and to describe the association between symptom burden and QoL. METHODS: Baseline data from a prospective longitudinal study of 143 men with mCRPC starting their first-line life-prolonging treatment were used. Symptoms were measured using the Memorial Symptom Assessment Scale (MSAS) and global QoL was measured by the EORTC QLQ C-30. Data was analyzed using descriptive- and multivariable linear regression analyses. RESULTS: On average, the men had more than 10 symptoms (range 0-31 of 33). 50% or more reported sweats, lack of energy, pain, problems with sexual activity and sexual desire. The symptoms they reported as most severe, or most distressing were not always the ones that were reported as most frequent. There was an association between QoL and physical symptoms, and also between QoL, and analgesic use and prostate-specific antigen (PSA) values. CONCLUSION: Even if some men with mCRPC report many symptoms, the dimensions of severity and distress levels vary, and the most frequent symptoms was not always the most burdensome or distressing. There was an association between high physical symptom burden and QoL, suggesting that it is not the number of symptoms that affects QoL but rather the subjective perceived impact of the physical symptoms experienced. The knowledge of how men with mCRPC experience and perceive their symptoms may help health care professionals in symptom management aiming to improve QoL, which is a cornerstone in integrating early palliative care.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Qualidade de Vida , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Prospectivos , Estudos Longitudinais , Dor
7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542265

RESUMO

Prostate cancer is the second leading cause of death in males in America, with advanced prostate cancers exhibiting a 5-year survival rate of only 32%. Castration resistance often develops during the course of treatment, but its pathogenesis is poorly understood. This study explores the human microbiome for its implications in castration resistance and metastasis in prostate cancer. RNA sequencing data were downloaded for the bone and soft tissue biopsies of patients with metastatic castration-resistant prostate cancer. These included both metastatic and adjacent normal biopsies. These sequences were mapped to bacterial sequences, yielding species-level counts. A vast majority of species were found to be significantly underabundant in the CRPC samples. Of these, numerous were found to correlate with the expression of known markers of castration resistance, including AR, PI3K, and AKT. Castration resistance-associated signaling pathways were also enriched with these species, including PI3K-AKT signaling and endocrine resistance. For their implications in cancer aggression and metastasis, cancer stem cell markers were further explored for a relation to these species. EGFR and SLC3A2 were widely downregulated, with a greater abundance of most species. Our results suggest that the microbiome is heavily associated with castration resistance and stemness in prostate cancer. By considering the microbiome's importance in these factors, we may better understand the highly aggressive and highly invasive nature of castration-resistant prostate cancer, allowing for the needed improvements in the treatment of this disease.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Disbiose , Castração , Receptores Androgênicos/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542313

RESUMO

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Assuntos
Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Fatores de Transcrição , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias de Próstata Resistentes à Castração/patologia
9.
Sci Rep ; 14(1): 7082, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528115

RESUMO

FOXA1 is a pioneer transcription factor that is frequently mutated in prostate, breast, bladder, and salivary gland malignancies. Indeed, metastatic castration-resistant prostate cancer (mCRPC) commonly harbour FOXA1 mutations with a prevalence of 35%. However, despite the frequent recurrence of FOXA1 mutations in prostate cancer, the mechanisms by which FOXA1 variants drive its oncogenic effects are still unclear. Semaphorin 3C (SEMA3C) is a secreted autocrine growth factor that drives growth and treatment resistance of prostate and other cancers and is known to be regulated by both AR and FOXA1. In the present study, we characterize FOXA1 alterations with respect to its regulation of SEMA3C. Our findings reveal that FOXA1 alterations lead to elevated levels of SEMA3C both in prostate cancer specimens and in vitro. We further show that FOXA1 negatively regulates SEMA3C via intronic cis elements, and that mutations in FOXA1 forkhead domain attenuate its inhibitory function in reporter assays, presumably by disrupting DNA binding of FOXA1. Our findings underscore the key role of FOXA1 in prostate cancer progression and treatment resistance by regulating SEMA3C expression and suggest that SEMA3C may be a driver of growth and tumor vulnerability of mCRPC harboring FOXA1 alterations.


Assuntos
Fator 3-alfa Nuclear de Hepatócito , Neoplasias de Próstata Resistentes à Castração , Semaforinas , Humanos , Masculino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Mutação , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Fatores de Transcrição/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
10.
Eur J Cancer ; 202: 114007, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518534

RESUMO

STUDY AIM: ModraDoc006, an oral formulation of docetaxel, is co-administered with the cytochrome P450-3A4 and P-glycoprotein inhibitor, ritonavir (r): ModraDoc006/r. The preliminary efficacy and safety of oral ModraDoc006/r was evaluated in a global randomized phase II trial and compared to the current standard chemotherapy regimen of intravenous (i.v.) docetaxel and prednisone. METHODS: 103 mCRPC patients, chemotherapy-naïve with/without abiraterone and/or enzalutamide pretreated, with adequate organ function and evaluable disease per RECIST v1.1 and PCWG3 guidelines were randomized 1:1 into two cohorts. In Cohort 1, 49 patients received docetaxel 75 mg/m2 i.v. every 3 weeks (Q3W). In Cohort 2, 52 patients received ModraDoc006/r; 21 patients with a starting dose of ModraDoc006 30 mg with ritonavir 200 mg in the morning and ModraDoc006 20 mg with ritonavir 100 mg in the evening (30-20/200-100 mg) bi-daily-once-weekly (BIDW) on Days 1, 8, and 15 of a 21-day cycle. To alleviate tolerability, the starting dose was amended to ModraDoc006/r 20-20/200-100 mg in another 31 patients. All patients received prednisone 10 mg daily. Primary endpoint was rPFS. RESULTS: There was no significant difference in rPFS between the 2 arms (p = 0.1465). Median rPFS was 9.5 months and 11.1 months (95% CI) for ModraDoc006/r and i.v. docetaxel, respectively. Partial response was noted in 44.1% and 38.7% measurable disease patients, and 50% decline of PSA was seen in 23 (50%) and 26 (56.5%) evaluable cases treated with ModraDoc006/r and i.v. docetaxel, respectively. The safety profile of ModraDoc006/r 20-20/200-100 mg dose was significantly better than i.v. docetaxel, with mild (mostly Grade 1) gastrointestinal toxicities, no hematologic adverse events, and neuropathy and alopecia incidence of 11.5% and 25%, respectively. CONCLUSIONS: ModraDoc006/r potentially represents a widely applicable, convenient, effective, and better tolerated oral taxane therapy option for mCRPC. Further investigation of ModraDoc006/r in a large randomized trial is warranted.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Docetaxel/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Prednisona , Ritonavir/efeitos adversos , Resultado do Tratamento , Taxoides/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno Prostático Específico
11.
BMC Cancer ; 24(1): 346, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500100

RESUMO

BACKGROUND: The androgen/androgen receptor (AR)-signaling axis plays a central role in prostate cancer (PCa). Upon androgen-binding the AR dimerizes with another AR, and translocates into the nucleus where the AR-dimer activates/inactivates androgen-dependent genes. Consequently, treatments for PCa are commonly based on androgen deprivation therapy (ADT). The clinical benefits of ADT are only transitory and most tumors develop mechanisms allowing the AR to bypass its need for physiological levels of circulating androgens. Clinical failure of ADT is often characterized by the synthesis of a constitutively active AR splice variant, termed AR-V7. AR-V7 mRNA expression is considered as a resistance mechanism following ADT. AR-V7 no longer needs androgenic stimuli for nuclear entry and/or dimerization. METHODS: Our goal was to mechanistically decipher the interaction between full-length AR (AR-FL) and AR-V7 in AR-null HEK-293 cells using the NanoLuc Binary Technology under androgen stimulation and deprivation conditions. RESULTS: Our data point toward a hypothesis that AR-FL/AR-FL homodimers form in the cytoplasm, whereas AR-V7/AR-V7 homodimers localize in the nucleus. However, after androgen stimulation, all the AR-FL/AR-FL, AR-FL/AR-V7 and AR-V7/AR-V7 dimers were localized in the nucleus. CONCLUSIONS: We showed that AR-FL and AR-V7 form heterodimers that localize to the nucleus, whereas AR-V7/AR-V7 dimers were found to localize in the absence of androgens in the nucleus.


Assuntos
Luciferases , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Células HEK293 , Neoplasias de Próstata Resistentes à Castração/patologia , Isoformas de Proteínas/genética
13.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38432581

RESUMO

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteína-Arginina N-Metiltransferases , Masculino , Animais , Camundongos , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Sistemas CRISPR-Cas , Genes Essenciais , Detecção Precoce de Câncer
14.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473877

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.


Assuntos
MicroRNAs , Hiperplasia Prostática , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , MicroRNAs/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Soro/metabolismo , Citratos , Lactatos , Acetatos
15.
Investig Clin Urol ; 65(2): 132-138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454822

RESUMO

PURPOSE: Oligoprogressive lesions are observed in a subset of patients who progress to castration-resistant prostate cancer (CRPC), while other lesions remain controlled by systemic therapy. This study evaluates the impact of progression-directed therapy (PDT) on these oligoprogressive lesions. MATERIALS AND METHODS: This retrospective study included 40 patients diagnosed with oligoprogressive CRPC. PDT was performed for treating all progressive sites using radiotherapy. Fifteen patients received PDT using radiotherapy for all progressive sites (PDT group) while 25 had additional first-line systemic treatments (non-PDT group). In PDT group, 7 patients underwent PDT and unchanged systemic therapy (PDT-A group) and 8 patients underwent PDT with additional new line of systemic therapy on CRPC (PDT-B group). The Kaplan-Meier method was used to assess treatment outcomes. RESULTS: The prostate specific antigen (PSA) nadir was significantly lower in PDT group compare to non-PDT group (p=0.007). A 50% PSA decline and complete PSA decline were observed in 13 patients (86.7%) and 10 patients (66.7%) of PDT group and in 18 patients (72.0%) and 11 patients (44.0%) of non-PDT group, respectively. The PSA-progression free survival of PDT-B group was significantly longer than non-PDT group. The median time to failure of first-line systemic therapy on CRPC was 30.2 months in patients in PDT group and 14.9 months in non-PDT group (p=0.014). PDT-B group showed a significantly longer time to progression than non-PDT group (p=0.025). Minimal PDT-related adverse events were observed. CONCLUSIONS: PDT can delay progression of disease and enhance treatment efficacy with acceptable tolerability in oligoprogressive CRPC.


Assuntos
Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Retrospectivos , Resultado do Tratamento , Intervalo Livre de Progressão
16.
Prostate ; 84(6): 560-569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311854

RESUMO

BACKGROUND: The treatment and surveillance of metastatic hormone-sensitive prostate cancer (mHSPC) has evolved since the introduction of several treatment intensification options associated with hormonal blockade and classifications based on the timing of metastatic disease presentation and disease volume. Using a hospital-based registry, we aimed to assess whether these new classifications are applicable to our population, as few studies have demonstrated their prognostic value for overall survival (OS) and time to development of castration-resistant prostate cancer (CRPC), and to establish prognostic factors in our population. METHODS: A retrospective cohort of mHSPC patients who were attended at an oncology referral hospital in Bogota between 2017 and 2021 were included in this study. The primary and secondary endpoints were OS and time to CRPC. The distribution of outcome measures was estimated using the Kaplan-Meier method. Proportional hazard models were constructed using the Cox regression approach and stratified according to risk factors. RESULTS: The study cohort included 373 patients. The median castration resistance-free survival was 48 months (CI: 32-73 months), and OS was 43 months (CI: 37-48 months). In multivariate analysis, nodal staging, ECOG status, and surgical castration were independent prognostic factors. CONCLUSION: In our hospital-based registry, the independent impact of the time of presentation on castration-resistant-free survival or OS could not be demonstrated, nor could the grouping of prognostic categories based on metastatic presentation temporality and volume. Other independent prognostic factors have been proposed.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Prognóstico , Estudos Retrospectivos , Neoplasias de Próstata Resistentes à Castração/patologia , Modelos de Riscos Proporcionais , Hormônios
17.
Mol Imaging Biol ; 26(2): 360-369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360991

RESUMO

PURPOSE: To assess the prognostic value of pre-treatment [68Ga]Ga-PSMA-11 PET/CT and other baseline clinical characteristics in predicting prostate cancer (PCa) patients response to [177Lu]Lu-PSMA (PSMA-I&T), as well as patient survival. PROCEDURES: In this retrospective study, 81 patients who received [177Lu]Lu-PSMA-I&T between October 2018 and January 2023 were reviewed. Eligible patients had metastatic castration-resistant PCa, underwent pre-treatment [68Ga]Ga-PSMA-11 PET/CT, and had serum prostate-specific antigen (PSA) levels available. On PET/CT images, SUVmax, SULmax, SUVpeak, and SULpeak of the most-avid tumoral lesion, as well as SUVmean of the parotid gland (P-SUVmean) and liver (L-SUVmean), were measured. Also, whole-body PSMA tumour volume (PSMA-TV) and total lesion PSMA (TL-PSMA) were calculated. To interpret treatment response after [177Lu]Lu-PSMA-I&T, a composite of PSA values and [68Ga]Ga-PSMA-11 PET/CT findings were considered. The outcomes were dichotomised into progressive versus controlled (stable disease or partial response) disease. Then, the association of baseline parameters with patient response was evaluated. Also, survival analyses were performed to assess baseline parameters in predicting overall survival. RESULTS: Sixty patients (age:73 ± 8, PSA:185 ± 371) were included. Patients received at least one cycle of [177Lu]Lu-PSMA therapy (median = 4). Overall, half of the patients showed disease progression. In the progressive versus controlled disease evaluation, the highest SULmax, as well as SUVmax and SULmax to both backgrounds (L-SUVmean and P-SUVmean), were significantly correlated with the outcome (p-values < 0.05). In the multivariate analysis, only SULmax to the L-SUVmean remained significant (p-value = 0.038). The best cut-off was 8 (AUC = 0.71). With a median follow-up of 360 days, 11 mortal events were documented. In the multivariate survival analysis, only SULmax to P-SUVmean (cut-off = 2.4; p-value = 0.043) retained significance (hazard ratio = 4.0). CONCLUSIONS: A greater level of PSMA uptake, specifically higher tumour-to-background uptake in the hottest lesion, may hold substantial prognostic significance, considering both [177Lu]Lu-PSMA-I&T response and patient survival. These ratios may have the potential to be used for PCa patient selection for radioligand therapy.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Idoso , Idoso de 80 Anos ou mais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos de Gálio , Prognóstico , Antígeno Prostático Específico , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias de Próstata Resistentes à Castração/patologia , Compostos Heterocíclicos com 1 Anel , Dipeptídeos/uso terapêutico
18.
Trends Cancer ; 10(4): 369-381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341319

RESUMO

Prostate cancer (PC) is immunosuppressive and refractory to immunotherapy. Infiltration of myeloid-derived suppressor cells (MDSCs) and senescent-like neutrophils and T cell exhaustion are observed in the tumor microenvironment (TME) following androgen receptor (AR) antagonism with antiandrogens or androgen ablation. De novo post-translational acetylation of the AR, HOXB13, and H2A at K609, K13, and K130, respectively, and phosphorylation of H4 at Y88 have emerged as key epigenetic modifications associated with castration-resistant PC (CRPC). The resulting chromatin changes are integrated into cellular processes via phosphorylation of the AR, ACK1, ATPF1A, and SREBP1 at Y267, Y284, Y243/Y246, and Y673/Y951, respectively. In this review, we discuss how these de novo epigenetic alterations drive resistance and how efforts aimed at targeting these regulators may overcome immune suppression observed in PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Fosforilação , Antagonistas de Androgênios , Epigênese Genética , Microambiente Tumoral/genética
19.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396837

RESUMO

Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Ácido Mevalônico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38396858

RESUMO

After recent approvals, poly-adenosine diphosphate [ADP]-ribose polymerase inhibitors (PARPis) have emerged as a frontline treatment for metastatic castration-resistant prostate cancer (mCRPC). Unlike their restricted use in breast or ovarian cancers, where approval is limited to those with BRCA1/2 alterations, PARPis in mCRPC are applied across a broader spectrum of genetic aberrations. Key findings from the phase III PROPEL trial suggest that PARPis' accessibility may broaden, even without mandatory testing. An increasing body of evidence underscores the importance of distinct alterations in homologous recombination repair (HRR) genes, revealing unique sensitivities to PARPis. Nonetheless, despite the initial effectiveness of PARPis in treating BRCA-mutated tumors, resistance to therapy is frequently encountered. This review aims to discuss patient stratification based on biomarkers and genetic signatures, offering insights into the nuances of first-line PARPis' efficacy in the intricate landscape of mCRPC.


Assuntos
Proteína BRCA1 , Neoplasias de Próstata Resistentes à Castração , Masculino , Feminino , Humanos , Proteína BRCA1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Medicina de Precisão , Proteína BRCA2/genética , Poli(ADP-Ribose) Polimerases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...